Soal Dan Pembahasan Turunan Fungsi Trigonometri Kelas 12

  Edukasi
Soal Dan Pembahasan Turunan Fungsi Trigonometri Kelas 12

pembahasan soal turunan fungsi trigonometri

1. pembahasan soal turunan fungsi trigonometri

Kategori Soal:Membuat Soal Trigonometri
Kelas:IX SMP

Pembahasan:

Nazril sejauh 10 meter dari tembok bangunan memandang puncak bangunan itu dengan sudut 30°. Berapa tinggibangunan itu …………?
jawab :
tan 30° = t
10
1 = t
√3 10
t = 10 = 10 √3
√3 3
Jadi tinggi bangunan itu adalah 10 √3
3

2. Ada yang punya kumpulan soal dan pembahasan turunan fungsi trigonometri? 10 soal + pembahasannya

Jawaban:

1.    Ordinat dari titik A (9, 21) adalah…

a.    -9

b.    9

c.    -21

d.    21

Pembahasan:

Secara umum, penulisan suatu titik = (absis, ordinat). Pada soal di atas titik A (9, 21) menunjukkan bahwa:

Absis = 9

Ordinat = 21

Jawaban yang tepat adalah D.

2.    Diketahui titik P (3, 2) dan Q (15, 13). Koordinat relatif titik Q terhadap P adalah…

a.    (12, 11)

b.    (12, 9)

c.    (18, 11)

d.    (18, 13)

Pembahasan:

Koordinat relatif titik Q ke titik P dapat dicari dengan mengurangkan:

a.    Absis Q dikurangi absis P

b.    Ordinat Q dikurangi ordinat P

Jadi, koordinat relatif Q terhadap P adalah:

(15 – 3 , 13 – 2) = (12, 11)

Jawaban yang tepat A.

3.    Titik A (3, 2), B (0, 2), dan C (-5, 2) adalah titik-titik yang dilalui oleh garis p. Jika garis q adalah garis yang sejajar dengan garis p, garis q akan…

a.    Sejajar dengan sumbu x

b.    Sejajar dengan sumbu y

c.    Tegak lurus dengan sumbu x

d.    Tegak lurus dengan sumbu y

Pembahasan: untuk mempermudah, mari kita gambar pada bidang Cartesius:

 Pada gambar di atas terlihat bahwa garis p sejajar dengan sumbu X. Karena garis q sejajar dengan garis p, maka garis q juga sejajar deng
an sumbu X.

Jawaban yang tepat A.

4.    Diketahui garis p dan q adalah dua garis lurus yang tidak memiliki titik potong meskipun diperpanjang hingga tak terhingga. Kedudukan garis p dan q adalah…

a.    Berimpit

b.    Sejajar

c.    Bersilangan

d.    Berpotongan

Pembahasan:

Dua buah garis yang tidak memiliki titik potong meskipun diperpanjang adalah dua garis yang saling sejajar. Jawaban yang tepat adalah B.

5.    Berdasarkan gambar di bawah ini, dapat dinyatakan bahwa:

(i)    AB sejajar dengan EF.

(ii)    BC bersilangan dengan GC

(iii)    AD berimpit dengan BC.

(iv)    EF berpotongan dengan GF.

Dari pernyataan di atas, yang benar adalah…

a.    (i) dan (ii)

b.    (ii) dan (iii)

c.    (iii) dan (iv)

d.    (i) dan (iv)

Pembahasan: perhatikan gambar balok di atas:

a.    AB sejajar EF , maka (i) benar

b.    BC berpotongan dengan GC di titik C, maka (ii) salah

c.    AD sejajar dengan BC, maka (iii) salah

d.    EF berpotongan dengan GF di titik F, maka (iv) benar

Jawaban yang benar adalah D.

6.    Besar <P = 113 derajat maka sudut P merupakan sudut…

a.    Refleks

b.    Tumpul

c.    Siku-siku

d.    Lancip

Pembahasan: 

Sudut P besarnya 113 derajat, ini berarti sudut P adalah sudut tumpul, karena sudut tumpul adalah sudut yang berada dalam kisaran 90 derajat sampai 180 derajat. Jawaban yang tepat B.

3. tolong bantu dong, soal matematika kelas 12 tentang turunan fungsi trigonometri

Penjelasan dengan langkah-langkah:

y = 4 sin (x/2 + 3)

y’ = 4 cos (x/2 + 3) x 1/2

y’ = 2 cos (x/2 + 3)

4. Tolong dijawab ya. Soal matematika minat kelas 12 Bab turunan fungsi trigonometri.

Jawaban:

[tex] \frac{7}{25} [/tex]

#backtoschool2019

Penjelasan dengan langkah-langkah:

Ada pada gambar

5. ***contoh soal trigonometri kelas 10 dan pembahasannya dong

dalam bentuk lain 3sin^2 x – 2cos^2 x =…..
jawab :
sin^2x + cos^2x=1 =>cos^2x= 1-sin^2x
sehingga:
3sin^2x-2cos^2x
= 3sin^2x-2(1-sin^2x)
=3sin^2x-2+2sin^2x
=5sin^2x-2

6. contoh soal trigonometri kelas 10 dan pembahasannya dong**

Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad

Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 1/2 π rad

b) 3/4 π rad

c) 5/6 π rad

7. contoh soal fungsi grafik trigonometri di bidang elektronika dan pembahasannya

bisa pakai gelombang berjalan, 
y=asin2pi(wt+lamda).
makenya misak di bidang laser.

8. soal dan pembahasan fungsi trigonometri

Fungsinya untuk menghubungkan antara sudut2 dalam suatu segitiga

9. contoh soal trigonometri kelas 10 dan pembahasannya dong

Nyatakan dalam sudut lancip
1. sin 100⁰
   pnylsaian : sin 100⁰=sin ( 180-100)⁰
                                     =sin 80⁰
2. sin 146
   pnylsaian : sin 146⁰ = sin ( 180-146)⁰
                                      = sin 34⁰
3. cos 95⁰
   pnylesaian : cos 95⁰ = cos  (180-95)⁰
                                      = -cos 85⁰
4. tan 136⁰
  pnyelesaian : tan 136⁰=tan (180-136)⁰
                                        = -tan 44
5.  sin 193
  pnyelesaian sin 193⁰ =sin(180+193)⁰
                                       = -sin 13⁰
6. cos 200⁰
  pnyelesaian cos 200⁰=cos(180+200)⁰
                                       =- cos 20⁰
7. sin (-13)⁰
 pnyelesaian sin (-13) ⁰= -sin 13⁰
8. cos (-35)⁰
  pnyelesaian cos (-35)⁰= cos 35⁰ -> khusus cos tettap +
9. tan (-68)
  pnyelesaian : tan (-68)=tan 68
10. cos 330⁰
    penyelesaian: cos 330⁰=cos(360-330)
                                            =cos 60
                                            =1/2√3Tentukan perbandingan trigonometri sudut lancipnya

1.  sin 300°
2.  cos 315°
3.  tan 225°

pembahasan

1.  sin 300° = sin (360 – 60)°
                   = -sin 60°
                   = -1/2 √3

2.  cos 315° = cos (270 + 45)°
                    = sin 45°
                    = 1/2 √2

3.  tan 225° = tan (180 + 45)°
                    = tan 45°
                    = 1

10. berikan 5 soal dan pembahasan mengenai fungsi trigonometri~

sebagaimana terlampir…
selamat belajar.

11. Contoh soal Turunan trigonometri atyran rantai dan pembahasannya

Lihat lampiran untuk contoh.

12. 10 contoh soal turunan fungsi trigonometri

1.) Turunan pertama dari f(x) = 7 cos (5 – 3x) adalah f ‘ (x) =  …..

2.) Jika f ‘(x) adalah turunan dari f(x) dan jika f(x) = ( 3x – 2 ) sin (2x + 1) maka f ‘ (x) adalah …

3.) Turunan pertama fungsi f (x) = 5 sin x cos x adalah f ‘ (x) = …

4.)Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = 4 sin x 
b. f(x) = 3 cos x 
c. f(x) = -2 cos x 
d. f(x) = 2 sec x 
e. f(x) = 2 csc x 

5.)Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin 6x + cos 6x 
b. f(x) = 3×4 + sin 2x + cos 3x 
c. f(x) = tan 5x + sec 2x 

6.)Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin x cos 3x 
b. f(x) = tan x cos 4x 

7.)Tentukan turunan pertama dari fungsi berikut :
y = (sin x + cos x)s 

8.)Tentukan turunan pertama dari fungsi berikut :
y = cos2 (2×2 + 3) 

9.)Tentukan turunan pertama dari fungsi berikut :
y = sin2 (2x + 3) 

10.)

13. limit fungsi trigonometri kelas 12​

Limit 0/0

lim x→0 ax/tan bx = a/b

lim x→0 tan ax/sin bx = a/b

lim x→0 (x tan 7x) / (tan 5x × sin 2x)

= lim x→0 (x (tan 7x)/x) / ((tan 5x – sin 2x)/x))

= 0(7/1) / (5/1 – 2/1)

= 0/3

= 0

14. Limit fungsi trigonometri kelas 12​

Jawaban:

semoga membantu, maaf kalo salah

15. Selesaikanlah soal turunan fungsi trigonometri berikut!

Jawab:

Penjelasan dengan langkah-langkah:

[tex]f(x)=\frac{cos(x)-sin(x)}{cos(x)}=\frac{cos(x)}{cos(x)}-\frac{sin(x)}{cos(x)}=1-tan(x)\\f'(x)=\frac{d}{dx}f(x)= -sec^{2}(x)[/tex]

16. Soal turunan fungsi trigonometri, bantu yaw

Jawaban:

i m sorrry id

Penjelasan dengan langkah-langkah:

i love indonesia

17. **contoh soal trigonometri kelas 10 dan pembahasannya dong

IDENTITAS TRIGONOMETRI :
sederhanakan
1. Tan A x cos A
2. Tan A x Cosec A
jawab :
1.  [tex] \frac{sin A}{cos A} [/tex] X cos A
dapat disederhanakan dengan cara mencoret/eliminasi cos A. Maka hasilnya sin A
2.  [tex] \frac{sin A}{cos A} [/tex] x [tex] \frac{1}{sin A} [/tex] dapat disederhanakan dengan mencoret/eliminasi sin A, lalu mendapat hasil [tex] \frac{1}{cos A} [/tex] dan dapat disederhanakan lagi menjadi Sec A

18. minta contoh soal turunan fungsi trigonometri serta pembahasan yaa

Limit fungsi trigonometri adalah nilai pendekatan suatu sudut pada fungsi trigonometri. Atau lim x→ ∞ f(x), dan f(x) merupakan fungsi trigonometri maka nilai dari limit tersebut disebut limit fungsi trigonometri             . Perhitungan limit fungsi trigonometri sebenarnya tidak jauh berbeda dari perhitungan limit fungsi aljabar, tetapi ada rumus tambahan yaitu rumus-rumus identitas trigonometri yang sangat  berguna untuk menyelesaikan persoalan menentukan nilai limit fungsi trigonometri. Sekarang kita pelajari dahulu rumus-rumus pendukung tersebut:
contoh soal :

semoga membantu ^_^

19. limit fungsi trigonometri kelas 12​

Jawab:

Penjelasan dengan langkah-langkah:

limit  ( x ->0 )  { 1 – cos² x } / { 3x. tan 2x}

= limit  ( x ->0 )  { sin² x } / { 3x. tan 2x}

= limit  ( x ->0 )  {sin x . sin x } / { 3x. tan 2x}

= limit  ( x ->0 )  { sin x /x }  { sin x /  tan 2x }

= (x / x) (x / 2x)

= (1) (1/2)

=  1/2

Video Terkait